Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Generation of SARS-CoV-2 escape mutations by monoclonal antibody therapy.

Journal article

Ragonnet-Cronin M. et al, (2023), Nat Commun, 14

Antigenic characterization of SARS-CoV-2 Omicron subvariant BA.4.6

Journal article

Dijokaite-Guraliuc A. et al, (2022), Cell Discovery, 8

Antibody escape of SARS-CoV-2 Omicron BA.4 and BA.5 from vaccine and BA.1 serum

Journal article

Tuekprakhon A. et al, (2022), Cell, 185, 2422 - 2433.e13

Potent cross-reactive antibodies following Omicron breakthrough in vaccinees

Journal article

Nutalai R. et al, (2022), Cell, 185, 2116 - 2131.e18

SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses

Journal article

Dejnirattisai W. et al, (2022), Cell, 185, 467 - 484.e15

Structures and therapeutic potential of anti-RBD human monoclonal antibodies against SARS-CoV-2

Journal article

Huang K-YA. et al, (2022), Theranostics, 12, 1 - 17

The antibody response to SARS-CoV-2 Beta underscores the antigenic distance to other variants.

Journal article

Liu C. et al, (2022), Cell host & microbe, 30, 53 - 68.e12

Reduced neutralization of SARS-CoV-2 B.1.617 by vaccine and convalescent serum

Journal article

Liu C. et al, (2021), Cell, 184, 4220 - 4236.e13

Antibody evasion by the P.1 strain of SARS-CoV-2

Journal article

Dejnirattisai W. et al, (2021), Cell, 184, 2939 - 2954.e9

Evidence of escape of SARS-CoV-2 variant B.1.351 from natural and vaccine-induced sera

Journal article

Zhou D. et al, (2021), Cell, 184, 2348 - 2361.e6

Reduced neutralization of SARS-CoV-2 B.1.1.7 variant by convalescent and vaccine sera

Journal article

Supasa P. et al, (2021), Cell, 184, 2201 - 2211.e7

The antigenic anatomy of SARS-CoV-2 receptor binding domain

Journal article

Dejnirattisai W. et al, (2021), Cell, 184, 2183 - 2200.e22

Caffeine inhibits Notum activity by binding at the catalytic pocket

Journal article

Zhao Y. et al, (2020), Communications Biology, 3

Hand-foot-and-mouth disease virus receptor KREMEN1 binds the canyon of Coxsackie Virus A10

Journal article

Zhao Y. et al, (2020), Nature Communications, 11

Structural basis for the neutralization of SARS-CoV-2 by an antibody from a convalescent patient

Journal article

Zhou D. et al, (2020), Nature Structural & Molecular Biology, 27, 950 - 958

Neutralization of SARS-CoV-2 by Destruction of the Prefusion Spike

Journal article

Huo J. et al, (2020), Cell Host & Microbe, 28, 445 - 454.e6

Neutralizing nanobodies bind SARS-CoV-2 spike RBD and block interaction with ACE2

Journal article

Huo J. et al, (2020), Nature Structural & Molecular Biology, 27, 846 - 854

Load More