Crystallization and X-ray diffraction of 5′-fluoro-5′- deoxyadenosine synthase, a fluorination enzyme from Streptomyces cattleya
Dong C., Deng H., Dorward M., Schaffrath C., O'Hagan D., Naismith JH.
Organofluorine compounds are widely prepared throughout the chemicals industry, but their prepararion generally requires harsh fluorinating reagents and non-aqueous solvents. On the other hand, biology has hardly exploited organofluorine compounds. A very few organisms synthesize organofluorine metabolites, suggesting they have evolved a mechanism to overcome the kinetic desolvation barrier to utilizing F -(aq). Here, the purification and crystallization of an enzyme from Streptomyces cattleya which is responsible for the synthesis of the C-F bond during fluoroacetate and 4-fluorothreonine biosynthesis is reported. The protein crystallizes in space group C222 1, with unit-cell parameters a = 75.9, b = 130.3, c = 183.4 Å, α = β = γ = 90°. Data were recorded to 1.9 Å at the ESRF. The structure of the protein should provide important insights into the biochemical process of C-F bond formation.