Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Membrane-bound O-acyltransferases (MBOATs) are membrane-embedded enzymes that catalyze acyl chain transfer to a diverse group of substrates, including lipids, small molecules, and proteins. MBOATs share a conserved structural core, despite wide-ranging functional specificity across both prokaryotes and eukaryotes. The structural basis of catalytic specificity, regulation and interactions with the surrounding environment remain uncertain. Here, we combine comparative molecular dynamics (MD) simulations with bioinformatics to assess molecular and interactional divergence across the family. In simulations, MBOATs differentially distort the bilayer depending on their substrate type. Additionally, we identify lipid binding sites surrounding reactant gates in the surrounding membrane. Complementary bioinformatic analyses reveal a conserved role for re-entrant loop-2 in MBOAT fold stabilization and a key hydrogen bond bridging DGAT1 dimerization. Finally, we predict differences in MBOAT solvation and water gating properties. These data are pertinent to the design of MBOAT-specific inhibitors that encompass dynamic information within cellular mimetic environments.

Original publication

DOI

10.1016/j.str.2024.03.014

Type

Journal article

Journal

Structure (London, England : 1993)

Publication Date

04/2024

Addresses

Department of Biochemistry, South Parks Road, Oxford OX1 3QU, UK; Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA. Electronic address: bansell5@stanford.edu.