Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

<jats:p>Purified preparations of lymphocyte plasma membrane were extracted exhaustively with Nonidet P-40 in Dulbecco's phosphate-buffered saline medium. The insoluble fraction, as defined by sedimentation at 10(6) g-min, contained about 10% of the membrane protein as well as cholesterol and phospholipid. The lipid/protein ratio, cholesterol/phospholipid ratio and sphingomyelin content were increased in the residue. Density-gradient centrifugation suggested that the lipid and protein form a common entity. As judged by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, the Nonidet P-40-insoluble fractions of the plasma membranes of human B lymphoblastoid cells and pig mesenteric lymph-node lymphocytes possessed similar qualitative polypeptide compositions but differed quantitatively. Both residues comprised major polypeptides of Mr 28 000, 33 000, 45 000 and 68 000, together with a prominent band of Mr 120 000 in the human and of Mr 200 000 in the pig. The polypeptides of Mr 28 000, 33 000, 68 000 and 120 000 were probably located exclusively in the Nonidet P-40-insoluble residue, which also possessed a 4-fold increase in 5′-nucleotidase specific activity. The results indicate that a reproducible fraction of lymphocyte plasma membrane is insoluble in non-ionic detergents and that this fraction possesses a unique polypeptide composition. By analogy with similar studies with erythrocyte ghosts, it appears likely that the polypeptides are located on the plasma membrane's cytoplasmic face.</jats:p>

Original publication

DOI

10.1042/bj2190301

Type

Journal article

Journal

Biochemical Journal

Publisher

Portland Press Ltd.

Publication Date

01/04/1984

Volume

219

Pages

301 - 308