Cellular imaging Wellcome Centre for Human Genetics

Facility Introduction James Bancroft, PhD

What we offer

- Training and ongoing support
- Consultation project planning, protocols, trial reagents
- Collaborative projects
- Analysis
- Seminars and workshops
- Drive purchase and implementation of new equipment

The right kind of resolution

Spatial resolution

Spectral

Technology to deliver resolution

5 confocal, 2 advanced widefield, 1 STORM/SMLM/TIRF, 1 laser capture micro-dissection

Spatial Resolution - User Friendly Super-Resolution

SoRa

Airyscan2 - Point-scanning confocal super-resolution

- Airyscan detector v2 4-8x increase in sensitivity
- 2x increase in resolution (~120nm x/y)
- Multiplexing increases acquisition speed (up to 18 fps single channel)
- Variable sliding dichroic mirrors allow efficient spectral separation

Traditional Confocal vs Airyscan

Confocal - Deconvolved

Airyscan

Traditional Confocal vs Airyscan

Airyscan zoom

Airyscan 3D Reconstruction

Airyscan live cell imaging

Super-resolution and sensitivity allowing cells to remain viable over long timelapse experiments

- 5 minute time lapse
- 20 hour duration
- 3 channels
- 50 z sections @ 0.19 μm
- 4 xy points

Data collected with Tom Hiron

SoRa - Super-resolution spinning disk

- Idealised pinhole and custom deconvolution achieving 120nm x/y resolution
- Very fast up to 50fps
- Can also be run in standard SD confocal mode for viability and speed
- 2 camera options
- Standard sample preparation

Cellular Imaging Core Facility data

Temporal resolution

SoRa super-res

GFP-EB3

500 ms/frame

Live EB3 comets tracking microtubule tips

Fast low light imaging of cilia in living fibroblasts

16 fields collected across 8 wells every 3 minutes for 10 hours

super-res

Data collected with Rebekka Siebold-Schwab

Fast low light imaging of cilia in living fibroblasts

16 fields collected across 8 wells every 3 minutes for 10 hours

super-res

Data collected with Rebekka Siebold-Schwab

Point scanning confocal systems Leica SP8 and SP8 FALCON overview

- Leica SP8 with white light laser and LAS X Navigator, 2 x HyDs, 2 x PMTs and dual external fluorescence lifetime detectors (photon-counting)
- Leica SP8 FALCON, 2 PMTs and 3 HyDs, fully integrated lifetime detection and resonant scan mode for super-fast imaging
- These systems offer sensitivity and huge spectral flexibility
- Easy to configure light paths
- FRET, FLIM, FRAP
- Simple large area multi-FOV imaging and seamless stitching

Spectral imaging

Rapid spectral selection using AOTF and multiple detectors

Multi-channel Imaging Spectral flexibility

- Setting up light paths has been simplified by software
- Flourophores of interest can be selected along with the desired detector type
- Users can select their preferred optical strategy
- Scanning strategies -
 - None sequential = all required lasers at once
 - Line sequential = lasers pulsed and lines scanned with subset of lasers to prevent cross detection but detector windows not moved
 - Frame/stack sequential = each channel scanned separately lasers and detector windows optimised for the channel. Useful with partially overlapping spectra but slow.

Tile imaging and stitching

Widefield illumination varies across a field of view - quilting Confocal illumination more uniformed as built from individually scanned

Parallel scan paths, less rotational offset between fields 48 individual fields at 63X seamlessly stitched

Tile imaging and stitching

Widefield illumination varies across a field of view - quilting

Confocal illumination more uniformed as built from individually scanned points

Parallel scan paths, less rotational offset between fields

48 individual fields at 63X seamlessly stitched

Biosensors - FRET & FLIM

- When a fluorophore is excited it emits light in a longer wavelength (Stokes Shift) \bullet
- If another fluorophore is within 10 nm of the emitting molecule (the donor) and can be excited by the wavelength of the emitted \bullet photon this molecule can be excited directly (acceptor)
- The excited acceptor then emits a photon of longer wavelength \bullet
- We can use this to study molecular interactions
- FLIM offers a more quantitive option by observing changes in the donor lifetime if FRET is occurring the donor lifetime decreases

Measuring dephosphorlyation by phosphatase using FLIM-FRET

An Aurora B kinase sensor fused to Histone 3 to tether it to DNA shows reduction in phosphorylation as chromatin moves away from Aurora B which remains on the central spindle during anaphase

Collaboration with Renaud Cous

FLIM-FRET microscopy

Widefield Imaging Leica DMI8 and EVOS M5000

- EVOS M5000 easy to use, high sensitivity lab based fluorescent system (4 channels + colour)
- Leica DMI8 advanced widefield
 - 2 cameras colour + high-sensitivity monochrome
 - Fast tile stitching
 - Fast filter wheel
 - Objectives
 - Air
 - LWD
 - Oil

High content screening

High content imaging and analysis **Olympus ScanR**

- ScanR first high-content screening system with confocal and superightarrowresolution in Oxford
- Large areas or large format plates (e.g. 96 well) scanning and full population data analysis
- Compatible with live cell imaging and fate map generation ightarrow
- Deep learning and label free imaging tools ightarrow
- Intuitive sub-population gating and analysis, similar to FACS ightarrow

Laser Capture Micro-dissection (LCM) Zeiss Microbeam

Pulsed LWL-UV laser cuts tissue samples

Defocused pulse moves sample into collection cap

Robomover upgrade can acomodate up to 96 collection caps

Monochrome camera and fluorescence now available

Downstream proteomic, transcriptomic or genomic sample analysis

Coming soon - Zeiss Elyra 7 - Lattice SIM Super-fast super-resolution

Resolution down to 60nm Up to 255 fps 2 cam simultaneous Easy sample navigation dSTORM/SMLM ~30nm

500 nm

60nm

70nm

SIM

69nm

Image analysis

CITIES Company

scanR

Setting main frame...

Imaris x64 8.1.2 [Jun 3 2015] Build 36825 for x64 Copyright © 1993-2015 Bitplane AG <u>www.bitplane.com</u> welcome@bitplane.com

bitplane.com

STRIN

Migration tracking Scratch assay

- 4x10 fields stitched in each well of a 24 well plate
- 15 minute interval for 24 hours
- Big data sets!Cells tracked using IMARIS
- Ensemble and individual statistics exportable

Data collected with Tom Hiron & Jiahao Jiang

0:00:00.000

Cell migration analysis Scratch assay

Cell displacement from starting vs total track length

Tracking cells in organoids Neurospheres

- Entire organoid imaged in 3D at 10X max-intensity projection shown
- 24 neurospheres images every 15 mins
- Central mass migrating neuronal progenitor cells identified
- Individual neurites leaving the neurospheres are identified based on and used to calculate radial fibre volume
- Analysis can be batch processed

Time: 00:00

Tracking cells in organoids Neurospheres

 Migrating neuronal progenitor cells identified and region defined

Time: 00:00

Tracking cells in organoids Neurospheres

Individual neurites leaving the identified leaving neuronal progenitor cells and used to calculate radial fibre volume

Time: 00:00

2D segmentation using Al Region growing vs Cellpose AI cellular segmentation

Cellpose is a pre-trained generalist deep learning neural network

3D segmentation of nuclei in ROI using AI

Immune infiltrate visualisation in pancreatic tissue - segmentation in Arivis using CellPose

Image thanks to Felicia Anna Tucci

3D visualisation & analysis ARIVIS & Imaris

- Compatible with most 3D data sets
- Volumetric segmentation and analysis

3D visualisation & analysis Zeiss ZEN Blue

Seamless workflow with Zeiss acquisition

Image processing tools - e.g. deconvolution

Easy 3D rendering

Batch processing and analysis pipelines

Instruments and imaging modalities available

Microscope	Туре	Resolution	Sensitivity	Speed	Spectral Flexibility	Live cell	Specialist applicatio
LSM 900 Airyscan 2	Point scanning confocal	+++	+++	+++	+++	+++	Live cell, Super res (120nm), La sample scanning
SP8 WLL	Point scanning confocal	++	++	++	+++	++	FLIM, FRAP, FCS Complex spect separation (5/6 channel experi
SP8 FALCON	Point scanning confocal	++	++	++	+++	++	Live cell, FLIM, FRAP, FCS
SpinSR SoRa	Spinning disk confocal	+++	++	+++	++	+++	High content, Rapid live cell, Su res (120nm), Rapid large sampl scanning
DMI-8	Widefield/TIRF	+	+++	+++	++		Dual cam: Colour and fluoresce imaging, Rapid large sample sc
ELYRA PS1	Widefield/TIRF/STORM	+++	++	+	++	+	STORM super res (30-40nm)
EVOS M5000	Widefield	+	++	+	++		Quick colour and fluorescent in of most sample formats

Cellular imaging Wellcome Centre for Human Genetics

Contact cellular-imaging@well.ox.ac.uk

Thank you

