Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Ag-specific chimeric human IgA molecules, of the two human subclasses, IgA1 and IgA2, have been expressed in two mammalian cell systems. Analysis of the secreted IgA molecules, purified in milligram quantities from stable Chinese hamster ovary transfectants by Ag affinity chromatography, has allowed a direct comparison of the biologic properties of the two subclasses. HPLC gel filtration analysis revealed that in both subclasses, the IgA molecules associate predominantly into dimers. The monomer units are presumed to interact noncovalently, inasmuch as no dimers are evident when the antibodies are subjected to SDS-PAGE. The recombinant antibodies are glycosylated, inasmuch as a lectin blotting procedure revealed that the H chains of both subclasses are recognized by Con A. When subjected to digestion by preparations of IgA1-specific proteases secreted by two pathogenic streptococcal strains, Streptococcus sanguis and Streptococcus oralis, the recombinant IgA molecules behave just as their natural equivalents. Thus, only the chimeric IgA1 molecule is cleaved, with the IgA2 remaining intact. In terms of interaction with natural effector molecules, both recombinant IgA isotypes were shown to interact with Fc alpha receptors on calcitriol-stimulated HL-60 cells with similar affinity, but neither antibody was found to interact with human C1q. The expression system described readily permits manipulation of the human IgA genes, which should lead to a fuller molecular understanding of how this important antibody mediates its function.

Type

Journal article

Journal

Journal of immunology (Baltimore, Md. : 1950)

Publication Date

11/1993

Volume

151

Pages

4743 - 4752

Addresses

Department of Molecular Biology and Biotechnology, University of Sheffield, United Kingdom.

Keywords

Cell Line, CHO Cells, Animals, Humans, Peptide Hydrolases, Serine Endopeptidases, Immunoglobulin A, Recombinant Fusion Proteins, Chromatography, Affinity, Transfection, Genetic Vectors, Cricetinae, Complement C1q